The Future of Food and Agriculture
National Institute of Food & Agriculture’s Role
Sonny Ramaswamy
An Existential Threat
Nutritional Security
Path Forward

• Transformative discoveries
• 21st Century Extension
• Farming systems
• Education
• Policies, regulation, marketing
• Human dimensions
• Communications
TIMELINE

4000–10,000 BCE | First crops and animals domesticated

2500 BCE | First use of natural biocntrol methods (neem in India)

2500 BCE | First use of manure as fertilizer

1400 CE | First use of arsenic as a pesticide

1700–1800s | Modernization of fertilizer

1862 | Abraham Lincoln establishes the USDA

1862 | Morrill Act of 1862 establishes the Land-Grant University System

1873 | First modern grain silos

1887 | Hatch Act establishes State Experiment Stations

1890 | Morrill Act establishes Black Land-Grant Colleges and Universities

1892 | First gasoline-powered tractor

1914 | Smith-Lever Act establishes Cooperative Extension

1940s–1950s | Development of first high yielding hybrid corn varieties

1950s | First software developed

1953 | Watson and Crick describe the structure of DNA

1961 | First digitally operated, programmable robot

1960s | Green revolution

1980s | Emergence of nanotechnology

1994 | First transgenic crop approved for sale

1994 | Equity in Educational Land-Grant Status Act establishes Tribal Land-Grant Colleges and Universities

2000 | Introduction of next-generation DNA sequencing technology launches the ‘omics era

2008 | The Farm Bill of 2008 establishes NIFA

2011 | Food Safety and Modernization Act signed into law

2010s | Development of genome editing technologies

2010s | Internet of Agricultural Things and Smart Systems

10,000 BCE | AGRICULTURE BEFORE USDA

1860 CE | THE FIRST 100 YEARS OF USDA

1960 | USDA/MODERN AGRICULTURE

PRESENT
TIMELINE

4000-10,000 BCE | First crops and animals domesticated
2500 BCE | First use of natural biocontrol methods (neem in India)
2500 BCE | First use of manure as a source of arsenic

10,000 BCE | Agriculture begins
1862 | Abraham Lincoln establishes the USDA
1862 | Morrill Act of 1862 establishes the Land-Grant University System
1873 | First modern grain silos
1887 | Hatch Act establishes State Experiment Stations
1890 | Morrill Act establishes Black Land-Grant Colleges and Universities
1892 | First gasoline-powered tractor
1914 | Smith-Lever Act establishes Cooperative Extension
1940s-1950s | Development of first high yielding hybrid corn varieties
1950s | First software developed
1953 | Watson and Crick
1961 | First digitally operated, programmable robot
1960s | Green Revolution
1980s | Emergence of nanotechnology
1994 | First transgenic crop approved for sale
1994 | Equity in Educational Land-Grant Status Act establishes Tribal Land-Grant Colleges and Universities
2000 | Introduction of next-generation DNA sequencing technology launches the genomics era
2008 | The Farm Bill of 2008 establishes NIFA
2011 | Food Safety and Modernization Act signed into law
2010s | Development of genome editing technologies
2010s | Internet of Agricultural Things and Smart Systems

USDA/Modern Agriculture
Ecological Footprint of Food and Agriculture

NIFA’s vision is to help facilitate approaches – including biophysical, behavioral, social, regulatory, and policy – to reduce footprint by at least 50 percent in the next 15-20 years.
NIFA Focus

• Vision
 – Catalyze transformative discoveries, education, and engagement to address agricultural challenges

• Discovery through Delivery Continuum
 – Discovery ➞ Translation ➞ Innovation ➞ Solution

User Inspired Science, Transforming Lives
Food Waste and Food Loss

- Double food production in 40 years
- Cut loss/waste by half?
- Cut water loss
 - One quadrillion liters/year
- Impact climate change
 - 1.4 kilograms (kg) CO$_2$-eq capita$^{-1}$day$^{-1}$; emissions of 33 million cars/year
NIFA SUPPORTS RESEARCH AND EDUCATION THAT SUSTAINABLY INCREASE PRODUCTIVITY BY:

INCREASING photosynthetic, water use, and nutrient use efficiency in crops and animals

DIVERSIFYING the product stream through novel crops, organisms, and processing technologies

PROTECTING these products against predators, parasites, diseases, and pathogens to ensure food safety

DEVELOPING & DEPLOYING the industrial, physical, and digital technologies to revolutionize planting, cultivation, harvest, storage, and transportation

PREPARING the next generation of agriculture professionals through education, training, and leadership development.
Productivity

- **Abiotic Variables**
 - Soil characteristics, water, nutrients, sunlight, temperature, and other weather and climatic conditions

- **Biotic Variables**
 - Plant and animal genes and physiology, pathogenic and non-pathogenic microbes, invertebrates
 - Microbiomes and plant and animal performance
 - Nematodes, arthropods, other invertebrates and plant and animal performance
• Genotyping and Phenotyping Technologies
 – High-throughput next-gen tools
 – Data management and processing
 – Computational infrastructure and cyberinformatics
 – Standards for metadata and machine inter-operability
 – Access and human resources

• Statistical and Quantitative Genetics
 – Genomic selection and new technologies (e.g., genomics, phenomics, image analysis) for rapid, low cost breeding

• Observational Science to Information Science to Predictive Science
 – Genotype X Environment X Management
• Genome Editing, Heterosis, Doubled Haploids
 – Defined genetic changes to complement traditional marker-assisted breeding approaches
 – Ploidy and genome editing challenges
 – Genes to change, delete, or substitute to enhance productivity and other traits in plants and animals
 – Optimizing heterosis and mechanisms to increase yields
 – Innovative technologies to enable creation of high throughput doubled haploids
 – Communicating value of genome editing technologies to ease public angst
 – Carbon constraints; environmental and animal welfare legislation

• Systems and synthetic biology
• **Productivity and Efficiency**
 – Genetic gains, feed efficiency, and animal productivity
 – Photosynthesis: C3 to C4
 – Cisgenics versus transgenics
 – N fixation in cereals
 – N, P, and water use efficiency in plants and animals
 – Resistance and tolerance to biotic and abiotic constraints

• **Traits**
 – Taste, quality, appearance
 – E.g., Resistant starch: TCAP project
 – E.g., Bioavailability of macro- and micronutrients in bean and rice bran: Colorado State University
 – E.g., Traits in beef cattle: Thermal tolerance, production, reproduction, and product quality. University of Florida
Smart Systems: Opportunities and Challenges

- Cyberphysical Systems
- Robotics
- Drones
- Sensors: Biological, Bio-NEMS, Bio-MEMS
- Big Data

Farm Food Systems Table
21st Century Farm

Outcome of Big Data and Analytics

2014 National Corn Yield Average: 171 Bushels
Randy Dowdy, farmer from Georgia: 503 Bushels

Randy Dowdy used sensors, optimal varieties, irrigation and fertilizers, pest control, and Big Data analytics with the help of Monsanto and Climate Corp.
Transforming Lives
Breeding and Genetics

- T-CAP Project
 - 95 new varieties & germplasm
 - 20 percent of US wheat acreage
 - ~$3.5 billion
 - 20 postdocs
 - 117 graduate students
 - 14 MSI students
 - 87 undergraduate students
 - 36 MSI faculty
 - 25 visiting scientists
• Beef Cattle Feed Efficiency
 – Identified chromosomal regions with “feed conversion genes”
 – Cattle producers use this information to build their herds by selection of breeding stock
 – Increasing nutritional efficiency results in higher profits by reducing feed intake
 – Reduce manure and greenhouse gases
 – University of Missouri
• Hypoallergenic Peanuts
 – 12th most valuable cash crop
 – Allergies in ~2.8 million people; 400,000 children
 – Soaking peanuts in food-grade enzyme solution reduces or eliminates up to 98 percent of allergens
 – No effect on flavor
 – NC A&T University
• Water Saving Technologies
 – Improved irrigation/water management technologies
 – Over 1.5 million acres of cropland
 – Savings of 114 billion gallons of water annually—enough water to supply a city the size of Tucson, AZ, for a full year
 – University of Nebraska
• **Harvest-Assist System**
 - Labor shortages and costs are driving innovation
 - In newer orchards, harvest-assist systems can increase efficiency 30-40%
 - Less physically demanding and safer (older or less-capable workers accommodated)
 - Two commercial products marketed (and a third, soon)
 - Carnegie-Mellon University, LGUs, and industry partners
• Citrus Greening
 – Florida has lost over $3.6 billion since 2007
 – Bacterium secretes effector proteins into host plant’s circulatory system, increasing the plant’s susceptibility to infection
 – Develop citrus resistant to citrus greening effectors
 – University of California-Riverside

https://ufhortscience.wordpress.com
https://nifa.usda.gov
@USDA_NIFA
• **Biomass Research & Development**
 - 25 new patents and invention disclosures
 - 49 new products/processes developed
 - 60 new jobs created
 - 125 jobs retained
 - 17,665 learners reached
 - 422 publications
 - $68 Million leveraged post-award
• **Nitrate Test Kit**

 – SBIR-funded
 – Severe droughts increase nitrates in plants
 – Nitrate poisoning in livestock
 – Nitrates prevent the bloodstream from transporting oxygen
 – Test kit for safe forage
 – The Nitrate Elimination Company, Inc.
• 4-H Tech Wizards
 – Began as pilot program through CYFAR grant
 – Replicated nationally through OJJDP grant
 – Now in 26 states, 85 sites, 10K+ youth & adults
 – 95 percent high school graduation rate
 – 70 percent pursuing post-secondary education
 – Oregon State University
• Smarter Lunchrooms
 – Increased consumption, reduced plate waste, increased cost savings
 – Naming vegetables
 • Saved 6 cents/serving
 – Moving fruit next to register
 • Saved 3 cents/serving
 – Smarter Lunchrooms makeover
 • Saved 2 cents/serving of fruits and vegetables and 3 cents/entrée
 – Slicing fruit
 • Saved 4 cents/serving
 – Cornell University
National Institute of Food and Agriculture
User Inspired Science, Transforming Lives