Smarter Farming with Smart Systems

Drones and More

Sonny Ramaswamy

http://www.ars.usda.gov/sp2userfiles/Place/20721500/images/rubus3.jpg
Nutritional Security: An Existential Threat
Food, Shelter, Fiber, Fuel > 9 billion
Path Forward

• Transformative discoveries
 – Smart Systems
 – Big Data

• 21st Century Extension

• Farming systems
 – 21st Century Farms

• Education

• Policies, regulation, marketing

• Human dimensions

• Communications
21st Century Farm

Outcome of Big Data and Analytics

2014 National Corn Yield Average: **171 Bushels**
Randy Dowdy, farmer from Georgia: **503 Bushels**

Randy Dowdy used sensors, optimal varieties, irrigation and fertilizers, pest control, and Big Data analytics with the help of Monsanto and Climate Corp.
Smarter Caneberry Production??

Goal – Develop new or improved engineered devices, products, or systems that:

Precisely sense, “reason,” and respond

Improve the profitability, productivity, and/or efficiency of ag-related operations of all sizes

Benefit consumers and society
Robust technologies that can be applied to a wide variety of crops and operations: e.g., varying fruit size, plant size and arrangement, and cultural practices.

Scale-neutral technologies: viable for both large and small producers.

Crisis-driven industries: weather, regulation, insects and diseases.
Agricultural Robotics

While producing **safe, nutritious, and affordable food** to serve a growing global population—as well as feed, fiber, and fuel—the agricultural enterprise **consumes large amounts of land, water, and petro-chemicals**.

Availability and cost of farm labor has created an economic disadvantage for many agricultural industries in the U.S. as they try to **compete** in the **global marketplace**.

Robotics can help agriculture be more productive and efficient, and reduce its footprint in consuming resources and generating waste.

Using robotics to eliminate unskilled, unsafe, and low-wage jobs will create **new business opportunities**, with higher-wage, technically demanding jobs, that can lead to **more viable and resilient rural economies**.
Agriculture is a science and engineering enterprise

How does this translate to blackberry and raspberry breeding?
What can smart systems do?

1) Assist in the berry production process
2) Measure plant performance
3) Track environmental conditions
4) Inform real-time decision making

DEVELOPING NEW TECHNOLOGIES

DESIGNING SMART SYSTEMS FOR BETTER BERRIES

Designing sensors, robots, and drones to measure environments and traits, production to post-harvest
What can smart systems do?

1) Assist in the berry production process
2) Measure plant performance
3) Track environmental conditions
4) Inform real-time decision making

Field production application to caneberries:
- Plant crops using precision tractors with GPS locators
- Develop machines for pruning and training
- Robotic weeding
What can smart systems do?

1) Assist in the berry production process
2) Measure plant performance
3) Track environmental conditions
4) Inform real-time decision making

Combine next-generation sequencing & new sensor technologies to acquire genotype, phenotype, and environmental data to identify relationship between genotype and phenotype.

Long-term goal: accelerate breeding via marker-assisted selection and genomic selection to aid rapid seedling screening.

DESIGNING SMART SYSTEMS FOR BETTER BERRIES

Designing sensors, robots, and drones to measure environments and traits, production to post-harvest

Generating large quantities of environmental, trait, and genetic data
What can smart systems do?

1) Assist in the berry production process
2) Measure plant performance
3) Track environmental conditions
4) Inform real-time decision making

Combine next-generation sequencing &
new sensor technologies to acquire genotype, phenotype,
and environmental data to
identify relationship between genotype and phenotype

Long-term goal: accelerate breeding via
marker-assisted selection and
genomic selection to aid rapid seedling screening

Challenges: Blackberry ploidy level,
Optimizing cost/benefit of bramble genomic
resources
What can smart systems do?

1) Assist in the berry production process
2) Measure plant performance
3) Track environmental conditions
4) Inform real-time decision making

Combine **next-generation sequencing** & new sensor technologies to **acquire genotype**, phenotype, and environmental data to **identify relationship between genotype and phenotype**

Long-term goal: **accelerate breeding** via marker-assisted selection and genomic selection to aid rapid seedling screening

DESIGNING SMART SYSTEMS FOR BETTER BERRIES

- Designing sensors, robots, and drones to measure environments and traits, production to post-harvest
- Generating large quantities of environmental, trait, and genetic data
- New technologies, statistical tools, and experimental design strategies are decreasing the costs of marker-assisted breeding

NIFA-funded RosBREED researchers are developing blackberry genetic markers (sweetness), leveraging genetic resources from closely related Rosaceous species
What can smart systems do?

1) Assist in the berry production process
2) Measure plant performance
3) Track environmental conditions
4) Inform real-time decision making

Combine next-generation sequencing & new sensor technologies to acquire genotype, phenotype, and environmental data to identify relationship between genotype and phenotype.

What to measure?
- Pest and disease resistance in raspberry (e.g., root rot, bushy dwarf virus, aphid resistance)
- Plant traits (e.g., taste, yield, berry firmness)
- Environments (e.g., soil moisture for precision irrigation)

How might this look in the field?
Example: Use drones equipped with infrared cameras to identify poorly performing field plots.
An example of phenotyping in the field, from grape

Video courtesy of Dr. Stephen Nuske
Smart systems generate lots of data

Storing collected raw data

Using algorithms to generate results from the raw data

Modeling to develop understanding of the data, inform breeding selections and field trials

DEVELOPING NEW TECHNOLOGIES
SCREENING GENOTYPES AND PHENOTYPES
MANAGING BIG DATA

DESIGNING SMART SYSTEMS FOR BETTER BERRIES

Designing sensors, robots, and drones to measure environments and traits, production to post-harvest
Generating large quantities of environmental, trait, and genetic data
Storing, processing, and analyzing the collected data to identify the genetic basis of desirable agronomic traits

#BigData
Big Data: Milieu

- Analytics
- Informatics
- Evidence-Based Tools
- Meta-Analysis and Synthesis
- Complex Systems
- Computational Sciences
- Data Engineering
- Data Mining
- Cloud Computing
- Implementation and Evaluation
- Data Security and Cybersecurity

- Predictive Modeling
- Data Visualization
- Decision Analytics
- Embedded Systems
- Machine Learning
- Multidimensional Data
- Network Science
- Sensor Networks
- Spatial Analytics
- Bandwidth
- Cyberphysical Systems
Big Data: Challenges

- Ownership
 - Open Ag Technology Systems
- Decision Support Tools
 - Open Ag Toolkit – NIFA funded
 - FarmBot
- Cost
- Bandwidth
- Quality
- Curation
- Disambiguation
- Connectivity
- Cybersecurity
- Storage

Courtesy: Dennis Buckmaster; https://engineering.purdue.edu/oatsgroup/
Smart systems generate lots of data

Need for education of workforce with the relevant knowledge and skills

 DESIGNING SMART SYSTEMS FOR BETTER BERRIES

- Designing sensors, robots, and drones to measure environments and traits, production to post-harvest
- Generating large quantities of environmental, trait, and genetic data
- Storing, processing, and analyzing the collected data to identify the genetic basis of desirable agronomic traits

#BigData
What can smart systems do?

1) Assist in the berry production process
2) Measure plant performance
3) Track environmental conditions
4) Inform real-time decision making

DEVELOPING NEW TECHNOLOGIES

SCREENING GENOTYPES AND PHENOTYPES

MANAGING BIG DATA

BREEDING DESIRABLE CROP VARIETIES

DESIGNING SMART SYSTEMS FOR BETTER BERRIES

- Designing sensors, robots, and drones to measure environments and traits, production to post-harvest
- Generating large quantities of environmental, trait, and genetic data
- Storing, processing, and analyzing the collected data to identify the genetic basis of desirable agronomic traits
- Selecting, genetically screening, field testing, and scaling desirable varieties for production

Future goal: Use sprayer technology to apply fertilizers, pesticides only where needed
What can smart systems do?

1) Assist in the berry production process
2) Measure plant performance
3) Track environmental conditions
4) Inform real-time decision making

Designing sensors, robots, and drones to measure environments and traits, production to post-harvest
Generating large quantities of environmental, trait, and genetic data
Storing, processing, and analyzing the collected data to identify the genetic basis of desirable agronomic traits
Selecting, genetically screening, field testing, and scaling desirable varieties for production
Using new technologies to harvest and transfer high-quality berries from farm to table
What can smart systems do?

1) Assist in the berry production process
2) Measure plant performance
3) Track environmental conditions
4) Inform real-time decision making

Application to caneberries:

State-of-the-art machine harvesters in the Pacific Northwest optimize efficient harvest of high quality fruit for the Individually Quick Frozen market.

Color and size sorters ensure quality products in the fresh and processed packing industries.

Photos courtesy of Dr. Bernadine Strik, Oregon State University
Frail-bots:
Inexpensive, relatively small, harvest-aiding robots

Reduces harvesting time by transporting hand-picked crops

Protects worker health by reducing slipping accidents

Berry Impact Recording Device: wireless postharvest data logging sensor

Aids in selecting blueberries that can withstand mechanical stress during harvesting, post-harvesting, shipping, and handling
What can smart systems do?

1) Assist in the berry production process
2) Measure plant performance
3) Track environmental conditions
4) Inform real-time decision making

Keys to success moving forward

• Developing new technologies via private-public partnerships, transdisciplinary collaborations
• Using new technologies to build upon existing discoveries, complement the breeders’ eye: e.g., primocane, spinefree, disease resistance
• Education of a new, more broadly trained ag workforce

“Genetic diversity remains the foundation of crop improvement, and anything that helps in identifying or expanding diversity will lead to more great discoveries.”

-- Dr. John Clark, University of Arkansas blackberry breeder

Fruit Grower News, October 2015
21st Century Farm

http://tinyurl.com/o78mah9
Humans Matter